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Emission around intersections has become an issue in the urban traffic network. ,is paper aims to investigate the impact of
pedestrian and nonmotorized vehicle violations on emissions at mixed-traffic flow intersection based on the volumes of vehicles,
nonmotor vehicles, and pedestrians. Also, it focuses on the arterial and collector intersections with high vehicle volume and
limited space. Running red light and crossing intersection diagonally are two critical violations, accounting for 91.75% of effective
violations (interference with vehicles’ operation). In this context, a violation blocking model is developed to estimate the blocking
probability for each vehicle based on the volumes of pedestrians and nonmotor vehicles. ,e model includes two scenarios. (1)
,rough phase: the violation blocking model of running red light is developed based on the survival curve (the relationship
between waiting time and running red light probability). (2) Left-turn phase: the violation blocking model at this phase includes
two parts: (i) crossing the intersection diagonally model is developed for the first vehicle and (ii) running red light model is
developed for subsequent vehicles.,e existing emission model can estimate the emissions based on the blocking positions. In the
case study, emissions increase with the vehicle volume approaching the saturated flow rate and the volumes of nonmotor vehicles
and pedestrians increasing. Results show that the maximum emission increase of CO (carbon monoxide) for through phase and
left-turn phase can reach 16.7% and 36.4%.

1. Introduction

Emission around intersections has become an issue in the
urban traffic network. [1], especially in densely populated
metropolitans. Previous studies illustrate that high emis-
sions mainly resulted from the stop-and-go vehicle activities
at the intersection [2–4], which further lead to high pollutant
exposure pedestrians around the intersections [5].

Violation behaviors frequently exist in developing
countries such as China [6]. Frequent violations can not only
merely intensify the traffic risk but also increase the stop-

and-go activities (see Figure 1). Few studies have investi-
gated the impact of violations of pedestrians and nonmo-
torized vehicles on the vehicle emissions at real world
intersections. A violation blocking model based on real
world data is recently developed instead of hypothetical
violations [7]. In this paper, the main problem is that how
many emissions were caused by pedestrian and nonmo-
torized vehicle violations based on the volumes of vehicles,
nonvehicles, and pedestrians in the real world.

A lot of research focused on intersection emissions,
which could be summarized into six categories: the influence
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of emissions caused by traffic congestion, single point signal
timing [8–10], signal coordination between intersections
[2, 11, 12], intersection shape [13], road characteristics [14],
and traffic behaviour. And existing research related to in-
tersection emissions can be divided into two categories: (1)
intersection emissions estimation and (2) traffic congestion
and traffic behaviour at the intersection.

In the existing studies, Rakha et al. [15] studied the
impact of acceleration and deceleration behavior at inter-
sections on emissions and found that emission was more
sensitive to cruise under the same speed levels. Papson et al.
[16] estimate emissions in a combination with the average
emission rate at the four driving modes at signalized in-
tersections. However, the aggregation of four driving modes
cannot reflect trajectory characteristics. Zhang et al. [17]
developed SIDRA model for the emission estimation at the
intersection. Gokhale et al. [18] developed a CO concen-
tration model based on the traffic flow pattern at intersec-
tions. Braven et al. [19] estimated emissions based on fuel
consumption and emission data obtained from an existing
emission inventory dataset.

In terms of congestion, Stevanovic et al. [20] suggested
that the moderate speed, shortest delays, and fewest stops are
the best vehicles’ operation of traffic on arterial roads for
emissions. Frequent stops and accelerating at intersections

can result in high fuel consumption. ,e accelerations lead
to higher fuel consumption rates compared to idling or
deceleration [20]. Many researchers studied determining the
factors affecting the emission levels at intersections. ,ese
studies show that nonsmooth operations and stop-and-go
activities are the most important factors for high emissions
at urban intersections [21, 22]. More time was spent in
acceleration at intersections because of stop-and-go activi-
ties. ,e vehicle’s engine power operates at a higher level
during acceleration, and it causes excessive emissions
[23, 24].

In terms of traffic behaviour, Sun et al. [25] quantified
the effects of Advanced Traffic Signal Status Warning Sys-
tems (ATSSWS) on driving behaviour. ,e systems can
reduce traffic emissions at intersections by reducing un-
necessary brakes and accelerations. Przybyla et al. [26]
studied the changes of vehicle trajectory and follow-up laws
under the distracted driving behaviour.,e following model
of the front and subsequent vehicles was developed under
the distracted behaviour. Mudgal et al. [27] investigated the
impact of variability of driving behaviours on vehicle
emissions at the roundabout intersection.

However, the quantification of the impact of real-world
violations (based on the volumes of vehicle, nonmotor ve-
hicle, and pedestrian) on the operation and emissions was

(a) (b)

(c) (d)

Figure 1: Violations at signalized intersections under mixed-traffic in Beijing. (a) Running red light at the through phase. (b) Running red
light at the left-turn phase. (c) Crossing the intersection diagonally. (d) Intruding into the lane.
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not investigated in the existing studies. ,erefore, this paper
develops a violation blocking model to estimate vehicles’
operation and emissions at the protected intersections of
arterials and collectors.

2. Materials and Methods

,is paper includes three steps. (1) ,e first is determining
the arterial and collector intersections as research object by
comparing the violations’ frequency of pedestrians and
nonmotorized vehicles of different types of intersections and
signal control. (2) Second is developing the violation
blocking model according to the characteristics of the vi-
olations. ,e blocking probability for each vehicle can be
estimated based on the volumes of pedestrians and non-
motor vehicles. (3) ,ird is estimating emissions based on
blocking positions and average lost time (see Figure 2) [7].

2.1. Data Source. ,e paper includes two data sources. (1)
Field survey data is used for analysing vehicle behaviors and
developing violation mode under the violation at intersec-
tions. (2) Emission data is used for quantifying emission.

2.1.1. Field Survey Data. ,e video data of 5 signalized
intersections under mixed-traffic flow were collected in
Beijing, China, 2017. ,e data includes intersection attri-
butes and operation data listed as follows:

(1) Intersection attributes

(a) Channelization information
(b) Signal information

(2) Operation data

(a) Fundamental data: this includes two parts: (1) the
volume of vehicle, nonmotor vehicle, and pe-
destrian and (2) the time headway of all vehicles
with a precision of 0.02

(b) Trajectories data: ten vehicles’ trajectories, which
are interfered by violations, are collected

(c) Time headway: 388 groups of time headway were
collected with a precision of 0.02 s under the
influence of violations

2.1.2. Emission Data. ,e vehicle emissions data are derived
from local emission rates model for light-duty gasoline
vehicles [28, 29]. ,e emission standard of China III is
selected to provide the emission rates for LDVs. ,e VSP
(Vehicle Specific Power) is estimated after the data quality
control [30, 31].

,e emission factors are estimated with the following
procedures based on idling time and the number of stops [7]:

(1) Eighty-five VSP distributions are developed
according to the number of stops, idling times, and
divisions upstream and downstream (see Table 1);

(2) ,e average emission factors in each VSP bin are
estimated and the emission factors in 85 intervals are
estimated, which are corresponding to each

operation state of intersection vehicles [7]. ,e
emissions can be quantified based on the idling time
and number of stops of vehicles before and after
violations.

2.2. Determination of Study Object. In Beijing, the arterial
roads have abundant traffic volume. ,erefore, violation
pyramids are developed based on three types of intersections
(arterial and arterial, arterial and collector, and arterial and
branch) (see Figure 3). Taking pedestrian as an example, the
pyramid of violations is divided into three levels: (1) pe-
destrian volume, (2) violation volume, and (iii) effective
violation (interference with vehicles’ operation). Effective
violation is defined as the violation which can interfere with
the vehicles’ operation. In the real world, the arterial and
collector intersections have a higher proportion of the ef-
fective violations, due to the high vehicle volume and limited
space (see Figure 3). ,ere are more conflicts and violations
between the three components (vehicle, nonmotor vehicle,
and pedestrian) in limited space. ,erefore, this paper aims
to investigate the impact of pedestrian and nonmotorized
vehicle violations on emissions at arterial and collector
intersections.

At mixed-traffic flow intersection, the category of vio-
lations is diverse and their occurrence probability is dif-
ferent. Running red light and crossing the intersection
diagonally account for 91.75% of effective violations.
,erefore, the object of this research is running red light and
crossing the intersection diagonally at arterial and collector
intersections.

2.3. Impact of Pedestrian and Nonmotorized Vehicle Viola-
tions on Vehicle Trajectories. Figure 4 shows the vehicle
trajectories which are affected by pedestrian and nonmo-
torized vehicle violations in which x-axis is time, and y-axis
is distance. ,e positive ordinate is the downstream the
intersection, and the negative ordinate is the position of
queuing vehicles. ,e red point represents the position and
time of the violation. τ is the sum of driver’s reaction time
and braking time, and Sτ is the corresponding distance. ,e
dotted lines and solid lines with the same color indicate the
same vehicle before and after violations, respectively (see
Figure 4).

,e vehicle fleet affected by pedestrian and nonmotor-
ized vehicle violations includes two types. (1) ,e first is
idling vehicles (see Figure 4(a)). ,e trajectory is similar
regardless of violations. When idling vehicles delay a start-
up by violations, the fleet’s idling time and the number of
stops will increase. (2) Second is running vehicles (see
Figure 4(b)). ,e impact of violations on the trajectories of
running vehicles is different. ,e first affected vehicle has
three processes: deceleration, idling, andacceleration. ,e
fluctuation of the fleet is gradually transmitting to the
subsequent vehicles and becoming smaller. ,e following
vehicles will have longer idling time such as the fifth car if the
fluctuation is small enough. ,en, the subsequent vehicles
will cross the intersection with the saturated headway.

Journal of Advanced Transportation 3
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2.4. Violation Blocking Model. In order to estimate the
blocking probability for each vehicle, a violation blocking
model is developed based on the volumes of vehicles,
nonmotor vehicles, and pedestrians. It is a basis for the
estimation of the emission increase of violations.

At the intersection of arterial and collector protected,
straight and left-turn vehicles cross the intersection at
different time and have different violation characteristics.
,erefore, this section includes two scenarios: (1)
through phase and (2) left-turn phase. All the violation

blocking models are developed based on the 55-cycle data
of arterial and collector intersections (Anli and Huizhong
North have 25 cycles, and Qinian and Zhushikou have 30
cycles).

2.4.1. 9rough Phase. Running red light is the main viola-
tion of through phase, because the diagonally crossing
nonmotor vehicles can cross the intersection twice legally.
,e 95.6% of red light runners will lead the head vehicle to

Table 1: Information of the eighty-five VSP distributions [7].

,e serial number ,e spatial position Number of stops Idling time(s)
1 Downstream intersection 0 0
2 Upstream intersection 0 0–2
3 Upstream intersection 1 2–5
4 Upstream intersection 1 5–10
5 Upstream intersection 1 10–15
⋮
30 Upstream intersection 1 135–140
31 Upstream intersection 1 140–145
32 Upstream intersection 1 145–150
33 Upstream intersection 2 10–15
34 Upstream intersection 2 15–20
35 Upstream intersection 2 20–25
⋮
83 Upstream intersection 2 260–265
84 Upstream intersection 2 265–270
85 Upstream intersection 2 270–275
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delay a start-up or restart; thus, the blocking position can be
regarded as the head vehicle at the through phase.

Huang et al. [32] have developed a survival curve to
describe the relationship between the probability of running
red light and the waiting time.

,e blocking probability at the through phase can be
estimated based on the probability of running red light and
the probability of the fleet being blocked under the running
red light condition.

,e violation blocking model at the through phase in-
cludes three parts: (1) correction coefficient is defined as the
probability of vehicle fleet being affected when pedestrian
and nonmotorized vehicle violations occur; k equals 0.402
according to the collected data; (2) the volume of pedestrians
and nonmotor vehicles is used to estimate how many pe-
destrians arrive at the waiting area during the specific time;
(3) pedestrians and nonmotor vehicles’ survival curve is used
to estimate how many pedestrians will run red light, and the
violation blocking model at the through phase is developed
as follows:

Pthrough � 1 − Pped · Pnon,

Pped � 
θ

i�1
k · C

i
θ · a

i
ped · 1 − a

i
ped 

θ− i
· 1 − 1 − βped 

i
 ,

Pnon � 
θ

i�1
k · C

i
θ · a

i
non · 1 − a

i
non 

θ− i
· 1 − 1 − βnon( 

i
 ,

aped �
Vped

C
,

anon �
Vnon

C
,

(1)

where Pthrough is the probability that the vehicle will be
affected in the through phase. Pped and Pnon are the violation
probability of pedestrian and nonmotor vehicles. K is cor-
rection coefficient, defined as the affected probability of
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Figure 4: Vehicle trajectories affected by the violation. (a) Idling vehicles. (b) Running vehicles.
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vehicle fleet when violations occur; k� 0.402. θ (s) is the
effective interval of nonmotor vehicle and pedestrian; ef-
fective interval is the crossing time of pedestrian and
nonmotor vehicle. I is used to describe that there are i
pedestrians running red light within the time θ. aped and anon
are the probability of reaching pedestrians per second. βped
and βnon are the probability of running red light when
pedestrians and nonmotor vehicles arrive. Vped and Vnon
(veh) are the volumes of pedestrian and nonmotor vehicle in
every signal period. C (s) is signal cycle time.

,e two intersections’ relative errors are 4.1% and 8.4%,
respectively, after inputting the actual data into the model.
,e result is acceptable due to the randomness of violation
behaviors (see Table 2).

2.4.2. Left-Turn Phase. At the left-turn phase, the vehicle
fleet can be blocked anywhere because the runners can insert
the fleet easily due to the lower speed and fewer lanes. ,e
violation blocking model at the left-turn phase includes two
scenarios: (1) the first vehicle affected by crossing the in-
tersection diagonally and (2) the subsequent vehicles af-
fected by running red light.

Both pedestrians and nonmotor vehicles have violation
behaviors. However, few pedestrians will have effective vi-
olations which can interfere with vehicle fleet at the left-turn
phase, due to the poor mobility of pedestrians and the long
distance between pedestrians and vehicles. ,us, the non-
motorized vehicle is the main research object at the left-turn
phase.

(1) Violation Blocking Model for Crossing the Intersection
Diagonally. ,e violation blocking model for crossing the
intersection diagonally has remarkable scale effect on vehicle
fleet. ,e head vehicle will delay a start-up or restart when
several nonmotor vehicles cross the intersection diagonally
together.

Based on the above analysis, the model for crossing
intersection diagonally includes two steps: (1) the estimation
of violation probability based on the volumes of nonmotor
vehicles and (2) the estimation of probability that the volume
of nonmotor vehicle crossing intersection diagonally ex-
ceeds specific scale.

,e violation blocking model for crossing the inter-
section diagonally is fitted by the logarithm model based on
the volumes of nonmotor vehicles, and the R2 equals 0.826.

P Nnon(  � 0.1641 · ln Nnon(  − 0.0978 Nnon ≥ 0,

P Nnon( ≤ 1,

(2)

where P (Nnon) is the probability of crossing intersection
diagonally. Nnon is the number of nonmotor vehicles that
want to arrive the diagonally opposite of intersections when
the turn-left light is on.

,e nonmotor vehicles will affect the start of the left-
turning fleet, when the number of nonmotor vehicles
crossing the intersection diagonally reaches a specific scale.
,e probability model of the number of violations exceeds a
specific scale that can be described as follows:

Pleft,diagonally Nnon(  � 1 − 

Nscale−1

i�0
C

i
Nnon

P Nnon( 
i
· 1 − P Nnon(  

Nnon− i
, (3)

where Pleft,diagonally is the probability of the head vehicle
affected. Nscale is the critical scale of violations, Nscale � 6.

,e two intersections’ relative errors are 0.32% and
19.56%, respectively, after inputting the actual data into the
model (see Table 3).

(2) Violation Blocking Model for Running Red Light. Non-
motor vehicles, which run the red light during the all-red
time, are always besides the left-turn fleet when the left-turn
light turns green. And red light runners will only affect the
subsequent vehicles due to the existence of the left-turn
waiting zone. ,e existing study indicates that the blocking
probability is increasing with time headway [33] (see Ta-
ble 4). ,e violation blocking model for running red light at
the left-turn phase includes two steps: (1) developing the
Gauss distribution of the time headway and (2) estimating
the corresponding blocking probability under the specific
time headway.

,e probability model of time headway is fitted by Gauss
model, and R2 equals 0.782. ,en, the corresponding
blocking probability can be estimated under the specific time
headway.

P(t) � 0.0077 + 0.0521 · e
−2.3222·(t−2.2864)2

,

Pleft,run(t) � t⟶ G(t),
(4)

where P (t) means that the probability of the time headway
is t. T (s) is time headway. Pleft, run (t) is the blocking
probability of running red light. G (t) is the correspon-
dence between the time headway and the blocking
probability.

2.4.3. Summary of Violation Blocking Model. ,e model’s
purpose is to estimate the blocking probability for each
vehicle based on the volumes of nonmotor vehicles and
pedestrians. ,e violation blocking model includes two
scenarios: through phase and left-turn phase.

At the through phase, the main pedestrian and non-
motorized vehicle violations are running red light, which
will lead the head vehicle to delay a start-up or restart. ,e
violation blocking model at through phase includes two
input parameters: (1) volumes of pedestrian and nonmotor
vehicle and (2) the survival curve which can quantify the
relationship between the probability of running red light and
the waiting time.
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At the left-turn phase, crossing the intersection diago-
nally affects the head vehicle’s operation, and running the
red light affects the subsequent vehicles’ blockage. ,e vi-
olation blocking model at left-turn phase includes three
input parameters: (1) volumes of pedestrian and nonmotor
vehicle, (2) the probability model of running diagonally, and
(3) the correspondence between the time headway and the
blocking probability.

2.5. Emission Model for Violation Blocking. ,e existing
emission model can estimate the emissions based on the
blocking positions. It includes two parts [7]. (1) ,e linear
emission model is developed considering the number of
stops and idling times, which is used for estimating emis-
sions under nonviolation and violation conditions. (2) Vi-
olation emission model is developed clearly at two levels:
trajectory level and traffic flow level (see Figure 5).

At the trajectory level, the study focuses on the first four
vehicles affected by pedestrian and nonmotorized vehicle
violations. First, the trajectory model of the head car is de-
veloped. ,en, the Gipps’ car-following model is also applied
for other three vehicles. Figure 5(a) shows the trajectories
under the impact of pedestrian and nonmotorized vehicle
violations in which x-axis is time, and y-axis is distance. ,e
red point represents the location and time of the violation. τ is
equal to the sum of driver’s reaction time and braking time,
and Sτ is the corresponding distance. ,e first affected vehicle
has three processes: deceleration, idling, and acceleration.,e
fluctuation of the fleet is gradually transmitting to the

subsequent vehicles and becomes smaller. When the fluctu-
ation is small enough, the following vehicles will have longer
idling time such as the fifth car.,en, the subsequent vehicles
will cross the intersection with the saturated headway. ,e
emissions can be estimated based on the speed and accel-
eration at 1 second interval (see Figure 5(a)).

At the traffic flow level, the study focuses on the sub-
sequent vehicles after the first four vehicles, and the study is
divided into unsaturated and saturated scenarios. It is as-
sumed that the total lost time of the first four effected ve-
hicles is 4 s. In the unsaturated scenario, the subsequent
vehicles’ idling time increases by 4 s, and the number of stops
is still one. In the saturated scenario, two vehicles will
transform from one stop to two stops due to the increase of
idling time. And the two-stop vehicles’ idling time increases
by 4 s. ,e emissions can be estimated according to the
developed linear emission model, whose input parameters
are the number of stops and idling times (see Figure 5(b)).

,e sum of the emissions on these two levels is the total
emissions at intersections affected by pedestrian and non-
motorized vehicle violations, which can be estimated as in
the following equation [7]:

AE �


e+3
x�eEFincreased,trajectory,x + 

n
y�e+4 EFincreased,flow,y  · D


n
i�1 EFupstream,i + EFdownstream  · D

− 1

(5)

where AE (%) is the increase of emissions. E is the eth vehicle,
which is the location of the first affected vehicle. N is the
vehicle number of the cycles. EFincreased,trajectory,x (g/km) is
the increased emission factors of the first four affected ve-
hicles. EFincreased,flow,y (g/km) is the increased emission
factors of the subsequent vehicles after the first four affected
vehicles. EFi (g/km) is the normal emission factors of ve-
hicles. EFupstream and EFdownstream (g/km) are the emission
factors at upstream and downstream the intersection. D
(km) is the distance of the study range, which is 0.2 km.

3. Case Study

Numerical simulations are designed in the case. Based on the
violation blocking model and the emission model, the im-
pact of pedestrian and nonmotorized vehicle violations on
intersection emissions can be quantified based on the

Table 3: Cross intersection diagonally at the left-turn phase: model error.

Intersection name
Blocking probability

Absolute error (%)
Actual blocking (%) Violation blocking model (%)

Anli and Huizhong North 12.00 12.32 0.32
Qinian and Zhushikou 46.67 65.23 19.56

Table 4: Gap accepted by nonmotor vehicles [33].

Time
headway(s) Refuse block Accept block Accept proportion (%)

1.5–2.0 41 0 0
2.0–2.5 163 16 9
2.5–3.0 111 37 25
3.0–3.5 92 48 34
3.5–4.0 57 82 59
4.0–4.5 33 90 73
4.5–5.0 10 56 85
5.0–5.5 8 96 92
5.5–6.0 0 61 100

Table 2: Running red light at the through phase: model error.

Intersection name
Blocking probability

Absolute error (%)
Actual blocking (%) Violation blocking model (%)

Anli and Huizhong North 53.3 57.4 4.1
Qinian and Zhushikou 60.6 69.0 8.4

Journal of Advanced Transportation 7
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volumes of vehicles, nonmotorized vehicles, and pedes-
trians. ,e numerical simulation object of the case is the
arterial (north-south) direction of the intersection (see
Table 5). ,e five simulation conditions are listed as follows:

(1) Violation average lost time is 5.52 s
(2) ,e research range is 200 meters around the

intersection
(3) ,e subject of the simulation is all the vehicles ar-

riving at the research scope
(4) ,e number of pedestrians and nonmotor vehicles is

assumed to be the same
(5) ,e max number of stops is two times

Repetitive simulations are really necessary due to the
randomness of violations. ,e average increase of 50 groups
simulations can improve the simulation accuracy.

4. Results and Discussion

,e emission increase of pedestrian and nonmotorized
vehicle violations has x-axis indicating the pedestrian/
nonmotor vehicles volume and y-axis indicating the vehicle
volume (see Figure 6).

Emissions increase with the vehicle volume approaching
the saturated flow rate and the volumes of nonmotor ve-
hicles and pedestrians increasing. ,e maximum emission
increase of CO for through phase and left-turn phase can
reach 16.7% and 36.4%, as shown in Table 6.

,e emission increase of left-turn phase is higher than
that of the through phase, because the blockings have a
greater impact on the left-turn phase due to the shorter green
time.

As the volume of pedestrians and nonmotor vehicles’
increasing, the emission increase has two processes with the
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Figure 5: Vehicle characteristics affected by pedestrian and nonmotorized vehicle violations. (a) Trajectory level. (b) Traffic flow level. [7].
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specific number of vehicles: (1) rising and (2) stable. ,e
violation probability is relatively stable when pedestrians
and nonmotor vehicles’ volume are at a high level.

As the volume of motor vehicles’ increasing, there are
three periods of the emission increase. (1) ,e first is rising
slowly. Before the traffic flow reaches the saturated flow
rate, there is only one stop regardless of the violation; thus,
pedestrian and nonmotorized vehicle violations will only

increase the idling time. (2) Second is rising rapidly. When
the vehicle approaches the saturated flow rate, vehicles
transform from one stop to two stops due to pedestrian and
nonmotorized vehicle violations. (3) ,ird is declining
steadily. ,e emission increase will decline steadily when
the volume of vehicles exceeds the saturation flow rate. ,e
proportion of the vehicles, which transform from one stop
to two stops because of pedestrian and nonmotorized
vehicle violations, reduces. ,e proportion of the vehicles,
which always stops two times regardless of violation, is
increasing.

5. Conclusions

,is paper studies the impact of pedestrian and nonmo-
torized vehicle violations on emissions at arterial and col-
lector protected intersections in the real world. First, the
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Figure 6: Emission increase of CO after pedestrian and nonmotorized vehicle violations based on the volumes of vehicles, nonmotor
vehicles, and pedestrians. (a) ,rough phase. (b) Left-turn phase.

Table 6: Maximum emission increase of pedestrian and nonmo-
torized vehicle violations.

Pollutant ,rough phase (%) Left-turn phase (%)
CO2 32.6 66.6
CO 16.7 36.4
NOX 20.1 47.5
HC 28.1 59.2

Table 5: Signal and channelization information of case intersection [7].

Signal information Channelization information

Phase Green Yellow All red Direction
Lane number

North-south straight 74 3 2 Straight Left Right
North-south left-turn 42 3 2 North 3 1 1
East phase 34 3 2 South 3 1 Straight-right
West phase 28 3 2 East 0 1 Straight-right
Cycle time 198 West 1 1 Straight-right
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characteristics of violations are compared under different
types of intersections and violations. Second, violation
blocking model is developed to evaluate the blocking po-
sition based on the volumes of vehicles, nonmotor vehicles,
and pedestrians. Finally, a numerical simulation is con-
ducted to evaluate the impact of pedestrian and nonmo-
torized vehicle violations on the emissions based on the
existing study. Main conclusions can be summarized as
follows:

(i) ,e arterial and collector intersections have a higher
proportion of effective violations due to the high
vehicle volume and intersection’s limited space.
Running red light and crossing intersection diag-
onally are two typical violations at the arterial and
collector intersection, which occupy 91.75% of ef-
fective violations.

(ii) ,e proposed violation blockingmodel based on the
volumes of vehicles, nonmotor vehicles, and pe-
destrians can be used for estimating the blocking
probability for each vehicle at the through phase and
left-turn phase.

(iii) ,e variation of emissions is significant based on the
volumes of vehicles, nonmotor vehicles, and
pedestrians:

(a) Emissions increase with the vehicle volume
approaching the saturated flow rate and the
volumes of nonmotor vehicles and pedestrians
increasing. ,e maximum emission increase of
CO for through phase and left-turn phase can
reach 16.7% and 36.4%.

(b) As the volume of pedestrians and nonmotor
vehicles’ increasing, the emission increment has
two processes under the specific volume of ve-
hicles: (1) rising and (2) stable. ,e blocking
probability is relatively stable when pedestrians
and nonmotor vehicles’ volume are at a high level.

(c) Emission increase is increasing as the vehicle
volume is approaching the saturated flow rate.
,erefore, as the increasing of the vehicle vol-
ume, the emission increase has three processes:
(1) rising slowly, (2) rising rapidly, and (3)
declining steadily.

,is paper develops a method to quantify the impact of
pedestrian and nonmotorized vehicle violations on emis-
sions at mixed-traffic flow signalized intersections. Further
studies would be conducted on the general model, distri-
bution of lost time of different violations, and red light
pedestrians at left-turn phase.
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